Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo methods for discontinuous media

This note aims to give a brief account on some recent progress of the simulation techniques of stochastic processes associated to divergence-form opertors with discontinuous coefficients, such as the one used in the Darcy law.

متن کامل

Continuous Relaxations for Discrete Hamiltonian Monte Carlo

Continuous relaxations play an important role in discrete optimization, but have not seen much use in approximate probabilistic inference. Here we show that a general form of the Gaussian Integral Trick makes it possible to transform a wide class of discrete variable undirected models into fully continuous systems. The continuous representation allows the use of gradient-based Hamiltonian Monte...

متن کامل

New Monte Carlo schemes for simulating diffusions in discontinuous media

We introduce new Monte Carlo simulation schemes for diffusions in a discontinuous media divided in subdomains with piecewise constant diffusivity. These schemes are higher order extensions of the usual schemes and take into account the two dimensional aspects of the diffusion at the interface between subdomains. This is achieved using either stochastic processes techniques or an approach based ...

متن کامل

Evaluating the Quasi-monte Carlo Method for Discontinuous Integrands

The Monte Carlo method is an important numerical simulation tool in many applied fields such as economics, finance, statistical physics, and optimization. One of the most useful aspects of this method is in numerical integration of higher dimensions. For integrals of higher dimensions, the common numerical methods such as Simpson’s method, fail because the total number of grid points needed to ...

متن کامل

Sequential Monte Carlo without likelihoods.

Recent new methods in Bayesian simulation have provided ways of evaluating posterior distributions in the presence of analytically or computationally intractable likelihood functions. Despite representing a substantial methodological advance, existing methods based on rejection sampling or Markov chain Monte Carlo can be highly inefficient and accordingly require far more iterations than may be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2020

ISSN: 0006-3444,1464-3510

DOI: 10.1093/biomet/asz083